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Optical Resonators

4.0

INTRODUCTION

Optical resonators, like their low-frequency, radio-frequency, and microwave coun-
terparts, are used primarily in order to build up large field intensities with moderate
power inputs. They consist in most cases of two, or more, curved mirrors that serve
to “‘trap,”’ by repeated reflections and refocusing, an optical beam that thus becomes
the mode of the resonator. A universal measure of this property is the quality factor
Q of the resonator. Q is defined by the relation

field energy stored by resonator
power dissipated by resonator

0=wX

(4.0-1)

As an example, consider the case of a simple resonator formed by bouncing a plane

TEIL/I wave between two perfectly conducting planes of separation / so that the field
inside is

e(z, 1) = E sin ot sin kz (4.0-2)
According to (1.3-22), the average electric energy stored in the resonator is

AS [ T
%elecu’ic = E]—,L J; ez(z, t) dZ dt <40’3)

whf:re A is'the cross-sectional area, € is the dielectric constant, and T = 27/ w is the
period. Using (4.0-2) we obtain

%eleclric = %EEZV (40-4)
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where V = IA is the resonator volume. Since the average magnetic energy stored in
a resonator is equal to the electric energy [1], the total stored energy is

% = 1eE*V ‘ (4.05)

Thus, recognizing that in steady state the input power is equal to the dissipated
power, and designating the power input to the resonator by P, we obtain from

(4.0-1)
B weE?*V
4P

_ 40P 4.06
E= weV ( )

Mode Density in Optical Resonators

The peak field is given by

The main challenge in the optical frequency regime is to build resonators that. possess
a very small number, ideally only one, high Q modes in a given spectral region. The
reason is that for a resonator to fulfill this condition, its dimensions need to be of

the order of the wavelength.

Example: One-Dimensional Resonator

We consider the simple transverse electromagnetic (TEM) two-mirror resonator with
a field distribution as given by Equation (4.0-2). The resonant frequencies are de-
termined by requiring that the field vanish at z = 0 and at the location z = L of the
second reflector. This happens when

sin k,,L = mm

m=12 ...

Using k,, = Om n, where n is the index of refraction, we obtain w,, = m(me/nL) for
c

the resonance frequencies corresponding to a frequency separation between adjacent
modes of Aw = mc/nL. If we, arbitrarily, choose the criterion of sufficient mode
spacing as Aw = w, we obtain L = M2n, i.e., the linear dimension needs to be
comparable to the wavelength (in the medium).
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Mode control in the optical regime would thus seem to require that we construct
resonators with volume ~A3(~107'?cm® at A = 1 wm). This is not easily achievable.
An alternative is to build large (L > A) resonators but to use a geometry that endows
only a small fraction of these modes with low losses (a high Q). In our two-mirror
example, any mode that does not travel normally to the mirror will ‘‘walk off”’ after
a few bounces and thus will possess a low Q factor. We will show later that when
the resonator contains an amplifying (inverted population) medium, oscillation will
occur preferentially at high Q modes, so that the strategy of modal discrimination
by controlling Q is sensible. We shall also find that further modal discrimination is
due to the fact that the atomic medium is capable of amplifying radiation only within
a limited frequency region so that modes outside this region, even if possessing high
Q, do not oscillate.

One question asked often is the following: Given a large (L > A) optical reso-
nator, how many of its modes will have their resonant frequencies in a given fre-
quency interval, say, between v and » + A»? To answer this problem, consider a
large, perfectly reflecting box resonator with sides, a,b,c along the x,y,z directions.
Without going into modal details, it is sufficient for our purpose to take the amplitude
field solution in the form

E(x,y,z) < sin k.x sin k,y sin k.z (4.0-7)

(Resonators of different shapes will differ in detail, but for large, L > A, resonators,
the results are similar.)

2
24K+ = (9 n) (4.08)
c
For the field to vanish at the boundaries, we thus need to satisfy
r s tr ~
k=" k=2 k= |
a’” b’ ¢ (4.0-80)

7,5,¢ any integers

With each such mode, we may thus associate a propagation vector k = £k, + Jk,
+ 2k,. The triplet r,s,f defines a mode. Since replacing any integer with its negative
does not, according to Equation (4.0-7), generate an independent mode, we will
restrict, without loss of generality, r,s,f to positive integers. It is convenient to de-
scribe the modal distribution in k space, as in Figure 4-1. Since each (positive) triplet
r,s,t generates an independent mode, we can associate with each mode an elemental
volume in k space.

Viode = —— = — 4.09
“=- (4.09)
where V is the physical volume of the resonator. We recall that the length of the

vector k satisfies Equation (4.0-8), rewritten here as

2mv(r,s,t)
—n

k(r,s,t) = (4.0-10)
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Figure 4-1 k space description of modes. Every positive triplet of integers 7,5, defines a
unique mode. We can thus associate a primitive volume 7*/abc in k space with each mode.

To find the total number of modes with k values between 0 and &, we divide
the corresponding volume in k space by the volume per mode:

l 41 k3
8/ 3 Y
NGy = 7’ T 6n’

14

(The factor 1/8 is due to the restriction of 7,5,z > 0.)
We next use (4.0-10) to obtain the number of modes with resonant frequencies
between 0 and »:

4mvn®V

N =35

The mode density, that is, the number of modes per unit » near v in a resonator
with volume V(>A3), is thus

3
o) = ﬂ;g)_”) _ miny @4.011)

C
where we multiplied the final result by 2 to account for the two independent or-
thogonally polarized modes that are associated with each r,s,¢ triplet.
The number of modes that fall within the interval dv centered on v is thus
1PV
N =3, (4.012)
c

where V is the volume of the resonator. For the case of V = 1 cm®, v = 3 x 10*
Hz and dv = 3 X 10'°, as an example, (4.0-12) yields N ~ 2 X 10° modes. If the
resonator were closed, all these modes would have similar values of Q. This situation
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is to be avoided in the case of lasers, since it will cause the atoms to emit power
(thus causing oscillation) into a large number of modes, which may differ in their
frequencies as well as in their spatial characteristics.

This objection is overcome to a large extent by the use of open resonators, which
consist essentially of a pair of opposing flat or curved reflectors. In such resonators
the energy of the vast majority of the modes does not travel at right angles to the
mirrors and will thus be lost in essentially a single traversal. These modes will
consequently possess a very low Q. If the mirrors are curved, the few surviving
modes will, as shown below, have their energy localized near the axis; thus the
diffraction losses caused by the open sides can be made small compared with other
loss mechanisms such as mirror transmission. (This point is considered in detail in
Section 4.9. The subject of losses is also considered in Section 4.7.)

FABRY-PEROT ETALON

The Fabry—Perot etalon, or interferometer, named after its inventors [3], can be
considered as the archetype of the optical resonator. It consists of a plane-parallel
plate of thickness / and index n that is immersed in a medium of index n'." Let a
plane wave be incident on the etalon at an angle 6’ to the normal, as shown in Figure
4-2(a). We can treat the problem of the transmission (and reflection) of the plane
wave through the etalon by considering the infinite number of partial waves produced
by reflections at the two end surfaces. The phase delay between two partial waves—
which is attributable to one additional round trip—is given, according to Figure
4-2(a), by

_4mnl cos 6

. (4.1-1)

where A is the vacuum wavelength of the incident wave and 6 is the internal angle
of incidence. If the complex amplitude of the incident wave is taken as A,, then the
partial reflections, B, B,, and so forth, are given by

By =rA; By=1ut'r' Ae® B;=u'r? Ae”

where r is the reflection coefficient (ratio of reflected to incident amplitude), ¢ is the
transmission coefficient for waves incident from n’ toward n, and ' and ¢’ are the
corresponding quantities for waves traveling from n toward »n’. The complex am-
plitude of the (total) reflected wave is A, = B; + B, + B3+ -, or

Ar — {I‘ + ttlr/ei’c‘(l + rrzeis + rl4eZi8 + .. )} Ai (4]_2)
For the transmitted wave,

A =t A Ay =%t A Ay = u'rie® A,

'In practice, one often uses etalons made by spacing two partially reflecting mirrors a distance / apart so
that n = n' = 1. Another common form of etalon is produced by grinding two plane-parallel (or curved)
faces on a transparent solid and then evaporating a metallic or dielectric layer (or layers) on the surfaces.



